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Abstract. A method for obtaining self-potentials and fields of charged
particle beams called the template potential algorithm has been devel-
oped. The approach stems from the analytical Green’s function formu-
lation and is based on a discrete representation by auxiliary macro-
elements or templates of the charge density distribution. Superposition of
the potentials and fields including image forces for each template is used
to reproduce the total potential and field of the original charge distri-
bution within a conducting boundary. The technique is especially useful
when the Poisson solver is being used repeatedly as with the simulation
of charged particle beam dynamics in accelerators. Numerical results are
presented and limitations of the method are discussed.

1 Introduction

The phrase fast Poisson Solver is most often used in relation to grid methods
for solving the Poisson equation within a region R,

Au(x) = —4np(x) for x = (z,y,2) € R

with specified conditions on the boundary OR using procedures based on the
Fast Fourier Transform (FFT) or cyclic reduction for simple regions and multi-
grid algorithms for more complicated boundary shapes. These techniques derive
the grid potential u(x) (x = (z,y,2)) and field E; , . from a grid density p(x)
assumed known apriori by solving a set of finite-difference equations. The results
usually have an accuracy of ¢)(h) = O(h* = h3 + h2 + h?) (where h, , . are the
mesh sizes). These solvers are in common use. See, e.g., [1] and references therein.

However, for charged particle beam simulation, at each step of the integration
of the motion equations only the coordinates of IV, macro-particles are known.
The spatial grid charge density p(x) is derived from the position of the beam par-
ticles. Hence, reproduction of the grid density influences both the speed and the
accuracy ¢y = t(h, Np) of the calculated potential [2, 3]. Increasing the number
of macro-particles, Np, reduces the computational noise of the grid density at



the expense of computational speed. The use of fewer particles with numerical
smoothing to reduce the noise, risks the masking of real physical phenomena.

This paper describes fast Poisson solvers for deriving self-potentials and fields
from macro-particles coordinates for particle-in-cell (PIC) code simulation. We
do not purpose to improve standard procedures such as density block or grid
potential solvers. Instead, we introduce a new formulation based on the tem-
plate potential concept [4, 5] for reconstruction of the total potential of charged
particle beam in the presence of boundaries. This new approach allows a signifi-
cant reduction in the number of macroparticles, N, and a sparser grid without
concomitant loss of accuracy. The technique may be used for either envelope or
PIC models in either two-dimensional (2D) or three-dimensional (3D) geome-
tries. The template technique has been verified and shown to be appropriate for
many practical space charge related applications.

2 Moment Method and Templates

A potential u(x) generated by a charge density distribution p(x) inside a volume
R with specified boundary conditions on R can be represented via the Green’s
function [6]. For free space, the potential u(x) can be derived from a simple
Green’s function of the form Gy,cc(x,x') = 1/|x — x'|. Difficulties arise in the
presence of a conducting boundary. As a practical manner, the Green’s function
approach is limited to simple beam distributions and surface OR geometries.
Nevertheless the idea of the Green’s function can be employed for numerical
Poisson solvers, appropriate for rather general beam distributions and boundary
shapes. In the moment method [7], the Green’s function formulation is used as
a part of computational technique, where the total potential is represented as
Utotal (X) = Ufree(X)+FUimage(X), X € R satisfying on the boundary utotailor = 0:

utotal(x) = / p(X’)Gfree (val)dxl + / Oimage (XI)Gf'r’ee (val)dsl (]-)
R aR

The potential wuf,c. is produced by the charge density p in free space with
Gfree(x,x%'). The corresponding image-potential, Uimage(x), defined by cimage
is found from a set of equations ||A|| Cimage = —Ufree that satisfy the constraint
Utotal(X)|xcor = 0 on the conducting surface. Thus, the diffuculty in the con-
struction of the proper Green’s function for complex geometries is replaced by
finding the image density.

Now the moment method with some modifications is known as the charge
density method with numerous applications in, e.g., ion optics [8]. Both methods
are slower than contemporary grid methods, but can be used in situations in
which rapid grid algorithms may be difficult to employ.

In a previous paper [4], we introduced a numerical method, called the slice
algorithm, based on the use of the template potential concept for space charge
calculations of a 3D bunched beam. The beam bunch is represented by charged,
infinitesimally thin disks, or slices, and the total beam potential is found by the
superposition of the potentials from all slices. The space charge potential of an



individual slice of radius Rgjce within a conducting boundary is found by the
moment method (1). Then, the matrix ||A|| is calculated, 0jmqge is derived from
the set of equations, and the total potential wsp¢q; Obtained from:

Ufotar(X, 8(2)) = ufiée (x, S(2)) + uinage (x, 8(2)) (2)

where S(z) is a shape function which defines the longitudinal z-profile of the
beam for the case of round slices. For elliptical slices, there are two shape func-
tions Sy, which determine the z-profiles. Fig. 1 illustrates the moment method.
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Fig. 1. Template potentials produced by three charged slices of different radii within
a conducting beam pipe 4 cm in diameter respectively. Left: usc.(x) (positive) and
Uimage(X) (negative) with x = (0,0, z), plotted with dotted, dashed and solid lines
for slices of 1, 2 and 3 cm in diameter. Right: The corresponding total potentials
Utotal = Ufree + Uimage fOr each slice respectively.

Fig. 2. Two possible 3D beams within a conducting beam pipe 4 cm in diameter
represented by Ny, = 50 charged slices. Left: Ellipsoid-like beam bunch with semiaxes
Ro x Ro X zm =1 cmx1 cmx10 cm and the shape function S(z) = Rov/1 — (2/2m)2.
Right: Beam bunch with more general longitudinal variation.

For this specific case all slices were assumed to have constant transverse
density os!"¢(r) = o3'c. The potential for each template satisfies the zero
potential boundary conditions and therefore, the superposition of all IV slices
representing the total beam bunch satisfies the Poisson equation. In Fig. 2 are
shown two possible bunched beam geometries. In both cases, the beam was



assumed to have a total charge of 107! C and be contained in a conducting
chamber 4 ¢m in diameter. The potentials u?% S shown in Fig. 3 were obtained
by superposition of the potentials of Vg =50 slices, representing the bunch.
These N slice potentials were found by appropriate scaling and interpolation of
the tabulated template potentials.
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Fig. 3. Potentials u(z,y, z) of bunched beams from Fig. 2 (left and right corespond-
ingly) as a function of longitudinal position, z, for different radii 0 < r = /22 +y2 <
Reyi, with 2Rc ;=4 cm. (See [9], p. 407 for comparison).

3 Templates for Arbitrary Beams.

The template approach can be used for variable transverse charge distributions
and elliptical beam shapes common to quadrupole focusing channels. However,
the beam is assumed centered within the conducting chamber.

A general two-dimensional model of the charge density, o°/*¢, for templates
is based on the concept of equivalent beams [9-11]:

2 2

slice -0 _ x _ Yy _ b
o (op) = om {1 = s = s (3)

where ,,(p), Y (p) are maximal slice coordinates dependent on the parameter
p. The rms size may be found from [11]:

Sy, 2ot (2, y, p)dudy

<z > (p) =
) Sy 0@y, p)dudy

In Fig. 4, rms-matched 2D charge density distributions are plotted. For p > 0
the densities are maximum in the center going to zero near the edge. For p = 0,
the charge density is constant, and for p < 0 hollow beams may be represented.
For p — oo the charge density is Gaussian [11]. Thus, this approach allows the
representation of a broad range of possible charge densities o°!*¢(x,y,p) with
rms-matched transverse dimensions.

The rms sizes for beams of elliptical symmetry are given by

K215, (p) K25, (p)

<x2>(p):2(p+1) and <y?>(p) = S+ 1)

(4)



where the semiaxes are a; = ko, (p),ay, = k!

ratio.
For the case of non-round (k # 1) beams, it is necessary to calculate the off-
axis potentials only for the first quadrant: ¢ € [0,7/2]. (See Fig. 4.) We found

rm(p) with k being the aspect
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Fig. 4. Left: Rms-matched charge densities o(r,p) as functions of r for different “p”.
Right: Slice within elliptical conducting boundaries. For elliptical symmetry there will
be horizontal and vertical shape functions Sz, (z). See section 4.

the template potentials along three rays (¢ = 0,7/4,7/2) to be sufficient to
interpolate potentials for intermediate ¢ values. Further 10 — 15 different aspect
ratios (k) were found to provide good accuracy for possible transverse beam
configurations.

4 Beam Simulation, Using Templates

For the simulation of charged particle beams with significant space charge ef-
fects, either rms envelope equations or step-by-step PIC codes may be used. The
envelope formalism though computationally fast, is appropriate only for beams
with elliptical symmetry propagating through a linear focusing channel in the
absence of image forces. The PIC methods are significantly slower, but acco-
modate arbitrary beam particle distributions, conducting chamber geometries,
and focusing structures. The template technique may be applied with different
degrees of generality to bridge the gap between rms envelopes and general PIC
formulations:

4.1 Extension of 2D and 3D RMS Envelope Equations.

In [11] it was shown how using the template technique the 2D rms envelope
formalism [9,12] can be extended to include the effects of a conducting ellip-
tical chamber. In this context, charged cylinders, instead of disks, are used as
templates. The difference between the more complete template approach and
that presented by the free space KV formalism is most pronounced for elliptical
bondaries with large aspect ratios. The rms envelope equations for a,, ., may



be also generalized for 3D ellipsoid-like beam bunch:

52

" - z,Y,z
Ay y,z + vayvza/xvyvz 3
ax7

== F;f%z =0 (5)
Y,z
where €5, . are rms emittances, Ky, . 1s the linear focusing and FJ¢ . the
space charge force (see [12], p. 278).
However, with the inclusion a conducting boundary, equation (5) is not valid,
since the space charge forces are assumed linear. In the presence of conducting
walls, the behavior of the space charge forces becomes strongly non-linear even

for an ideal ellipsoid [9, 13] or non-ellipsoidal beam, as shown in Fig. 5. However,
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Fig. 5. Longitudinal space charge fields E.(z,y,z) = —0u/0z as a function of z, at
different radii 0 < r = /a2 + y2 < Reyi. Left: E, for the ellipsoid-like beam. Right:
E. for the arbitrary beam from Fig. 2.

the template potential method may be used to correctly obtain the required
fields, even for rather general beam distributions and boundary shapes. Both
longitudinal F°*! and transverse fields F/%“ may be obtained from the poten-
tials, by averaging and linearization of F%/%. Substitution of this result in lieu

of F;¢, . in (5), provides a more self-consistent model.

4.2 3D Non-Ellipsoidal Beam.

Arbitrary beams, like that of Fig. 2 (right), may not be appropriately acco-
modated by an envelope model. We need to include macro-particles {x;}, i =
1,..., N, in the model. In this case, the template approach may again be applied
to general beam distributions and conducting boundaries. The transverse rms
beam dimensions < x2 >'/? (z) and < y? >!/2 (z), as functions of the longi-
tudinal coordinate, z, are calculated. The shape function Sy ,(z) is then found
from (4) for a specific p. Previous analysis [11] has shown that for 0 < p < 3 the
result is not sensitive to the precise form of S, ;. See Fig. 6. The space charge
fields Ei";aé are derived from wiotai (%, Y, 2), Utotar(® £ hy,y £ hy, 2 £ h.) and
define the space charge forces F'*'*! = Flolal on each particle. The integration
of the motion equations:

x!(s) + Fe(x;,s) — Frotol(x; 5) = 0 (6)
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Fig. 6. Left: 3D bunched beam from Fig. 2 (right) within a conducting chamber of
radius Reyr = 2 cm, showing the macroparticles ensemble in ZX plane. The dashed line
shows the rms beam size and the solid line corresponds the actual beam shape S(z).
Right: Potentials, found by the sub-3D Poisson Solver as a function of z, at different
radii, 0 < r = /2?2 +y% < Reyi. The solid lines are the solutions of the template
technique and symbols are from the sub-3D Poisson Solver for NI =15 “thick” slices.

can be implemented in a self-consistent manner even with arbitrary non-linear
external forces F¢®. After that, new coordinates {x;} are found and new rms-
profiles, shape functions, and total potentials obtained [14]. Note, that with this
approach explicit calculation of charge density is not required. See Fig. 7.

The number of macroparticles required is relatively small, e.g., N, o< 10%,
since the macro-particles are used only to generate the shape function, Sy ,(2),
rather than the spatial density p(x). In contrast, other PIC approaches such as
those using cloud-in-cell (CIC) density algorithms, require 10 — 107 macropar-
ticles. As a result, the integration of equations (6) is very fast.

4.3 Sub-3D Poisson Solver for General Beam Simulation.

The space charge potential in the region R, satisfying zero boundary conditions
at OR may be found from the 3D Poisson equation, which can be re-written as:

Pu P o
dx?  oy? TPBY) T g e

Introducing the corrected charge density [5], we obtain:

1 0%u

pcorr(xvyvz) = P(%yvz) + E@

Then the standard Poisson equation may be re-written as:

o0%u d%u
@ + a—yz = 47Tpcorr(xvy) (8)

Note, that the series of 2D solutions of (8) could be used to obtain the solution
of the original Poisson equation if the term 9*u/dz? would be known. Dividing
the beam along the longitudinal, z, axis by NI “thick” slices, we can rewrite



the Poisson equation (8) and for each “thick” slice 27 € [ — H,z + HI] a 2D
Poisson equation is solved with the new density pcorr:

_ pQD(xvyva) 1 aEz
Pcorr = HZ - E 8z (9)

Instead of 9?u/d2% in (7) we substitute in (9) the driving term —9E,/dz, ob-
tained from the template technique solution for the same boundary constraints.
Thus, the 2D Poisson solver for (8)-(9) for each “thick” slice finds the transverse
self-potentials and electric fields E, , with all possible generality, whereas the
longitudinal fields E, are supplied by the template technique. See Fig. 6. The

corresponding space charge forces F;";“Zl are substituted into the equation (6)
for trajectories integration.
3D coordinates {x,} 3D coordinates {x,} 3D coordinates {x,}
i=1,...,N, i=1,...N, i=1,...,N,
/ \
Rms profile Isilrln S pg?ﬁ(le) ( )
ape S, (z X
Shape S, (2) pzD(X) <— Template algorithm Pan
Template algorithm : i
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Fig. 7. Space charge calculations by different methods for one step of integration of the
3D beam motion equations. Left: Method from section 4.2. Middle: Sub-3D Poisson
Solver from section 4.3. Right: Regular 3D Solver.

Note, that the generation of the transverse forces is separated from the longi-
tudinal forces. The derivative 0E,/0z participates in each of the 2D Solvers by
correcting the 2D charge density. Without inclusion of the driving term 9?u/dz>
the calculation of E, , would be in error [5]. Fig. 7 illustrates a step of integration
using the sub-3D and a general 3D Poisson Solvers.

5 Templates as Special Functions

The tabulation of the template potentials prior to beam simulation follows the
principle used for other special functions that do not have a simple analyti-
cal representation. During the actual space charge simulations, the template
data is extracted from the table with appropriate scaling and interpolation. The
storage requirements for the template table can be minimized. Since each tem-
plate potential represents an even function, it is necessary to store only half
of them, say u(z,y,z) for z > 0. See Fig. 1. In addition, the template data
could be parametrized and only the resulting coefficients stored. The number
of templates required depends on the geometry of the problem. For the axially
symmetric beam of Fig. 2, only 10 different radii were required. For each such



template, 10 off-axis potentials should be calculated, resulting in a total of 100
templates. For cases with less symmetry, e.g., for beam and boundary with ellip-
tical symmetry of Fig. 4 about of 3000 templates are required with the increase
from necessary different azimuthal positions (3x) and aspect ratios (10x). Thus,
the table of templates is of a moderate size. All intermediate quantities are ob-
tained by interpolation and scaling of the tabulated data. For 2D cases, when
there is no dependence on z, the memory demands are an order of magnitude
less.

The accuracy of the sub-3D Poisson solver approaches is that of the gen-
eral 3D PIC models. Nevertheless, the template formalism is not completely
self-consistent because the pre-calculated data may not adequatedly reflect all
possible evolutions of the particle distribution. Since the transverse 2D analy-
sis can be used for arbitrary densities pap(x,y,), the 2D problems are solved
with all possible generality. The lack of self-consistency is in the replacement
of 8?u/dz? by OF,/0z in (9). Nonetheless, the quantitative analysis in [10, 11]
showed that for a large class of density distributions o(z,y,p) there is a rela-
tively weak sensitivity of the longitudinal E, fields to the details of transverse
charge densities. As the result, the space charge fields: £, , found from a series
of 2D problems (8) and E,, supplied by the slice algorithm, provide an accurate
representation of space charge forces.

For beams, whose transverse densities may be described analytically (3), the
template formalism is appropriate. However, for cases where the beam bunch
has, e.g., isolated off-axis clusters, the template formalism is not appropriate
and a general 3D PIC method should be employed.

6 Discussion and Conclusions

The template techique is oriented toward repeated calculations, e.g., for charged
particle beam dynamics simulation. For those situations, where the beam pipe
sizes are fixed or only slightly varying and the beam is “well-behaved” in the
sense discussed above, the templates procedure significantly reduces simulation
computational time. The verification of the method has shown a good agreement,
with general 3D grid solvers for a large class of charge density distributions. The
proper inclusion of changing boundaries would require additional pre-calculated
template data. This might be justified if only a few possible geometries are
required. However, when the boundaries are complicated and/or changing sig-
nificantly, and if the beam distribution is arbitrary (i.e. off-set from the axis,
disintegrated into clusters, etc.) the template technique is likely inappropriate
and conventional grid methods are recommended.

Preliminary numerical studies provide confidence that the template formal-
ism is an efficient method for fast space charge calculations in the presence
of conducting boundaries. It allows the extention of 2D and 3D beam rms-
envelope equations including conducting boundaries. It provides a transition to
self-consistent rather general sub-3D PIC, that is significantly faster than con-
ventional 3D PIC formulations.
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